Abstract
The stability, electronic, and optical properties of (6,5) single-walled carbon nanotubes (CNTs) functionalized with free-base tetraphenylporphyrin (TPP) molecules through π-stacking interactions are studied by ab-initio calculations. The stability and optical response of the CNT-TPP compounds for increasing CNT-surface coverage are investigated. Our results show that four TPP molecules forming a ring around the CNT is the most stable configuration, showing strong binding energies of about 2.5 eV/TPP. However, this binding energy can increase even more after additional molecules assemble side by side along the CNT, favoring the formation of a full single layer of TPP, as experimentally suggested. The strong π-π attractive forces induce molecular distortions that move the TPP higher-occupied molecular orbital levels inside the CNT bandgap, changing the optical response of the TPP molecules stacked on the CNT.
Original language | English |
---|---|
Article number | 023110 |
Journal | Applied Physics Letters |
Volume | 105 |
Issue number | 2 |
DOIs | |
Publication status | Published - 14 Jul 2014 |
ASJC Scopus subject areas
- Physics and Astronomy (miscellaneous)