TY - GEN
T1 - Solving Sum-of-Costs Multi-Agent Pathfinding with Answer-Set Programming
AU - Gómez, Rodrigo N.
AU - Hernández, Carlos
AU - Baier, Jorge A.
N1 - Publisher Copyright:
Copyright © 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2020
Y1 - 2020
N2 - Solving a Multi-Agent Pathfinding (MAPF) problem involves finding non-conflicting paths that lead a number of agents to their goal location. In the sum-of-costs variant of MAPF, one is also required to minimize the total number of moves performed by agents before stopping at the goal. Not surprisingly, since MAPF is combinatorial, a number of compilations to Satisfiability solving (SAT) and Answer Set Programming (ASP) exist. In this paper, we propose the first family of compilations to ASP that solve sum-of-costs MAPF over 4-connected grids. Unlike existing compilations to ASP that we are aware of, our encoding is the first that, after grounding, produces a number of clauses that is linear on the number of agents. In addition, the representation of the optimization objective is also carefully written, such that its size after grounding does not depend on the size of the grid. In our experimental evaluation, we show that our approach outperforms search-And SAT-based sum-of-costs MAPF solvers when grids are congested with agents.
AB - Solving a Multi-Agent Pathfinding (MAPF) problem involves finding non-conflicting paths that lead a number of agents to their goal location. In the sum-of-costs variant of MAPF, one is also required to minimize the total number of moves performed by agents before stopping at the goal. Not surprisingly, since MAPF is combinatorial, a number of compilations to Satisfiability solving (SAT) and Answer Set Programming (ASP) exist. In this paper, we propose the first family of compilations to ASP that solve sum-of-costs MAPF over 4-connected grids. Unlike existing compilations to ASP that we are aware of, our encoding is the first that, after grounding, produces a number of clauses that is linear on the number of agents. In addition, the representation of the optimization objective is also carefully written, such that its size after grounding does not depend on the size of the grid. In our experimental evaluation, we show that our approach outperforms search-And SAT-based sum-of-costs MAPF solvers when grids are congested with agents.
UR - http://www.scopus.com/inward/record.url?scp=85101144099&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85101144099
T3 - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
SP - 9867
EP - 9874
BT - AAAI 2020 - 34th AAAI Conference on Artificial Intelligence
PB - AAAI press
T2 - 34th AAAI Conference on Artificial Intelligence, AAAI 2020
Y2 - 7 February 2020 through 12 February 2020
ER -