Solvent, coordination and hydrogen-bond effects on the chromic luminescence of the cationic complex [(phen)(H2O)Re(CO)3]+

Pablo Mella, Karina Cabezas, Carla Cerda, Marjorie Cepeda-Plaza, German Günther, Nancy Pizarro, Andrés Vega

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

The [(phen)(H2O)Re(CO)3]+(CF3SO3)- salt, 1+(CF3SO3-), has been crystallized in the form of two new solvates, [(phen)(H2O)Re(CO)3]+(CF3SO3)-·(C4H8O)0.5 and [(phen)(H2O)Re(CO)3]+(CF3SO3)-·CH2Cl2. The structures, as determined by single-crystal X-ray diffraction, show intense hydrogen bonding between the coordinated water molecule on 1+ and the triflate oxygen atoms, with Owater⋯Otriflate in the range from 2.608(13) to 2.972(13) Å. This feature, to the best of our knowledge, is preserved for each solvate of 1+(CF3SO3-). The spectroscopic characterization of 1+(CF3SO3-) in solution together with DFT and TD-DFT results suggest that its photophysical behavior depends on the solvent polarity, as normally found for MLCT, but additionally, on the coordinating and hydrogen bonding ability of the solvent. The results suggest that in low-polarity, non-coordinating and non-hydrogen bonding solvents, the intimate association observed in the solid between 1+(CF3SO3-) is preserved, in contrast to coordinating solvents that may replace the coordinated water. Finally, weakly coordinating but hydrogen bonding solvents may dissociate the ionic pair units. The sum of all these effects leads to an apparent unusual solvent dependency of the luminescence emission with hypsochromic or bathochromic shifts depending on the coordinating ability of the solvent.

Original languageEnglish
Pages (from-to)6451-6459
Number of pages9
JournalNew Journal of Chemistry
Volume40
Issue number7
DOIs
Publication statusPublished - 2016

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Solvent, coordination and hydrogen-bond effects on the chromic luminescence of the cationic complex [(phen)(H2O)Re(CO)3]+'. Together they form a unique fingerprint.

Cite this