Simplified mathematical model for computing draining operations in pipelines of undulating profiles with vacuum air valves

Óscar E. Coronado-Hernández, Vicente S. Fuertes-Miquel, Edgar E. Quiñones-Bolaños, Gustavo Gatica, Jairo R. Coronado-Hernández

Research output: Contribution to journalArticlepeer-review

Abstract

The draining operation involves the presence of entrapped air pockets, which are expanded during the phenomenon occurrence generating drops of sub-atmospheric pressure pulses. Vacuum air valves should inject enough air to prevent sub-atmospheric pressure conditions. Recently, this phenomenon has been studied by the authors with an inertial model, obtaining a complex formulation based on a system composed by algebraic-differential equations. This research simplifies this complex formulation by neglecting the inertial term, thus the Bernoulli's equation can be used. Results show how the inertial model and the simplified mathematical model provide similar results of the evolution of main hydraulic and thermodynamic variables. The simplified mathematical model is also verified using experimental tests of air pocket pressure, water velocity, and position of the water column.

Original languageEnglish
Article number2544
JournalWater (Switzerland)
Volume12
Issue number9
DOIs
Publication statusPublished - Sep 2020

Keywords

  • Air valves
  • Air-water interface
  • Bernoulli's equation
  • Draining
  • Hydraulic transients

ASJC Scopus subject areas

  • Biochemistry
  • Geography, Planning and Development
  • Aquatic Science
  • Water Science and Technology

Fingerprint

Dive into the research topics of 'Simplified mathematical model for computing draining operations in pipelines of undulating profiles with vacuum air valves'. Together they form a unique fingerprint.

Cite this