Abstract
The development of an effective hypersensitive response (HR) in any plant system relies, not only in their gene composition and expression, but also on an effective and rapid signal transduction system. Lemon seedlings induce the phenylpropanoid pathway, which results in the de novo biosynthesis of the phytoalexin scoparone, as part of the hypersensitive response against Alternaria alternata. In order to elucidate some of the signaling elements that participate in the development of HR in lemon seedlings, we used several compounds that are known as activators or inhibitors of signal transduction elements in plants or in animal cells. Lemon seedlings treated either with cholera toxin or with phorbol 12-myristate 13-acetate (PMA), in the absence of A. alternata induced phenylalanine ammonia-lyase (PAL, E. C. 4.3.1.5) and the synthesis of scoparone, suggesting the participation of a G-protein and of a serine/threonine kinase, respectively, in signal transduction. The use of trifluoperazine (TFP), W-7, staurosporine, lavendustin A or 2,5-dihydroximethyl cinnamate (DHMC) prevented PAL induction as well as scoparone biosynthesis in response to the fungal inoculation, thus allowing us to infer the participation of Calmodulin (CaM), of serine/threonine and of tyrosine protein kinases (TPK) for signal transduction in Citrus limon in response to A. alternata.
Original language | English |
---|---|
Pages (from-to) | 373-383 |
Number of pages | 11 |
Journal | Biological Research |
Volume | 35 |
Issue number | 3-4 |
DOIs | |
Publication status | Published - 2002 |
Keywords
- Alternaria alternata
- Citrus limon
- Hypersensitive response
- Signal transduction
ASJC Scopus subject areas
- General Biochemistry,Genetics and Molecular Biology
- General Agricultural and Biological Sciences