Renal Decapsulation Prevents Intrinsic Renal Compartment Syndrome in Ischemia-Reperfusion-Induced Acute Kidney Injury: A Physiologic Approach.

PABLO ILICH CRUCES ROMERO, PABLO IGNACIO LILLO ARAYA, Camila Salas A., Tatiana Salomón S., FELIPE JAVIER LILLO ARAYA, CARLOS MANUEL GONZALEZ RIVEROS, Alejandro Pacheco V., DANIEL HURTADO

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)
170 Downloads (Pure)

Abstract

OBJECTIVES:
Acute kidney injury is a serious complication with unacceptably high mortality that lacks of specific curative treatment. Therapies focusing on the hydraulic behavior have shown promising results in preventing structural and functional renal impairment, but the underlying mechanisms remain understudied. Our goal is to assess the effects of renal decapsulation on regional hemodynamics, oxygenation, and perfusion in an ischemic acute kidney injury experimental model.
METHODS:
In piglets, intra renal pressure, renal tissue oxygen pressure, and dysoxia markers were measured in an ischemia-reperfusion group with intact kidney, an ischemia-reperfusion group where the kidney capsule was removed, and in a sham group.
RESULTS:
Decapsulated kidneys displayed an effective reduction of intra renal pressure, an increment of renal tissue oxygen pressure, and a better performance in the regional delivery, consumption, and extraction of oxygen after reperfusion, resulting in a marked attenuation of acute kidney injury progression due to reduced structural damage and improved renal function.
CONCLUSIONS:
Our results strongly suggest that renal decapsulation prevents the onset of an intrinsic renal compartment syndrome after ischemic acute kidney injury.
Original languageEnglish
Article numberdoi: 10.1097/CCM.0000000000002830.
Pages (from-to)216-222
Number of pages6
JournalCritical Care Medicine
Volume46
Issue number2
Publication statusPublished - 2018

Fingerprint

Dive into the research topics of 'Renal Decapsulation Prevents Intrinsic Renal Compartment Syndrome in Ischemia-Reperfusion-Induced Acute Kidney Injury: A Physiologic Approach.'. Together they form a unique fingerprint.

Cite this