Probing UHECR and cosmic ray ensemble scenarios with a global CREDO network

CREDO Collaboration

Research output: Contribution to journalConference articlepeer-review


Among theoretical approaches in unveiling the physics of ultra-high-energy cosmic rays (UHECR) one can distinguish the models assuming interactions of exotic super-heavy matter (including extra dimensions, Lorentz invariance violation, cosmic strings, dark matter particles or particles beyond the standard model etc.) and acceleration scenarios describing processes, in which the particles are accelerated by a particular astrophysical object (shocks in relativistic plasma jets, unipolar induction mechanisms, second-order Fermi acceleration, energy transfer from black holes or compact stars etc.). Primary UHECR particles can produce cascades already above the Earth atmosphere, which may be detected as the so-called cosmic ray ensembles (CRE) - the phenomena composed of at least two cosmic ray particles, including photons, with a common primary interaction vertex or the same parent particle with correlated arrival directions and arrival times. In this contribution, we give a brief description of a novel approach to the probing of cosmic ray scenarios with the global Cosmic Ray Extremely Distributed Observatory (CREDO) network.

Original languageEnglish
Article number472
JournalProceedings of Science
Publication statusPublished - 18 Mar 2022
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: 12 Jul 202123 Jul 2021

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Probing UHECR and cosmic ray ensemble scenarios with a global CREDO network'. Together they form a unique fingerprint.

Cite this