Predictive Control of a Back-to-Back NPC Converter-Based Wind Power System

Alejandro Calle-Prado, Salvador Alepuz, Josep Bordonau, Patricio Cortes, Jose Rodriguez

Research output: Contribution to journalArticlepeer-review

56 Citations (Scopus)


As wind power technology points to increase power ratings, the implementation based on a permanent-magnet synchronous generator (PMSG) with a full-power converter is expanding its market share. Multilevel converters, as for example, neutral-point clamped (NPC) converters, are therefore well suited for this application. Predictive current control presents similar dynamic response and reference tracking than other well-established control methods, but working at lower switching frequencies, and providing extensive flexibility to apply either online or offline different control laws to the same plant. In this work, the predictive current control is applied to both sides of the back-to-back NPC converter connecting a permanent-magnet synchronous wind power generator to the grid. DC-link neutral-point balance is achieved by means of the predictive control algorithm, which considers the redundant switching states of the back-to-back NPC converter. Reduced number of commutations, current spectrum control, and compliance with the low-voltage ride-through (LVRT) requirement are carried out with the predictive control. The obtained experimental results confirm the suitability of the proposed control approach.

Original languageEnglish
Article number7405321
Pages (from-to)4615-4627
Number of pages13
JournalIEEE Transactions on Industrial Electronics
Issue number7
Publication statusPublished - Jul 2016


  • Low-voltage ride-through
  • Wind energy
  • permanent-magnet synchronous generator
  • predictive control
  • reactive support
  • voltage unbalance

ASJC Scopus subject areas

  • Control and Systems Engineering
  • Electrical and Electronic Engineering


Dive into the research topics of 'Predictive Control of a Back-to-Back NPC Converter-Based Wind Power System'. Together they form a unique fingerprint.

Cite this