Abstract
Fertilization in sea urchins is followed by the replacement of sperm-specific histones by cleavage-stage histone variants recruited from maternal stores. Such remodelling of zygote chromatin involves a cysteine proteinase that degrades the sperm-specific histones in a selective manner, leaving the maternal cleavage-stage histone variants intact. The mechanism that determines the selectivity of the sperm-histone-selective proteinase (SpH-proteinase) was analysed by focusing on the post-translational modification status of both sets of histones. It has previously been reported that only native cleavage-stage histones are poly(ADP-ribosylated), whereas the sperm-specific histones are not modified. To determine whether the poly(ADP-ribose) moiety afforded protection from degradation, the ADP-ribose polymers were removed from the cleavage-stage histones in vitro; these proteins were then assayed as potential substrates of the SpH-proteinase. Strikingly, the cleavage-stage histone variants were extensively degraded after the enzymic removal of their ADP-ribose moieties. In addition, the SpH cysteine proteinase was not inhibited by isolated poly(ADP-ribose) polymers. Consequently, only poly(ADP-ribosylated) cleavage-stage histone variants are protected from proteolysis. These results demonstrate a novel role for this type of post-translational modification, namely the protection of nuclear proteins against nuclear proteinases after fertilization.
Original language | English |
---|---|
Pages (from-to) | 95-98 |
Number of pages | 4 |
Journal | Biochemical Journal |
Volume | 343 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Oct 1999 |
Keywords
- Chromatin
- Cysteine-proteinase
- Pronucleus
- Sea urchins
- Zygotes
ASJC Scopus subject areas
- Biochemistry
- Molecular Biology
- Cell Biology