Abstract
Phosphoethanolamine (pEtN) decoration of E. coli Lipopolysaccharide (LPS) provides resistance to the antimicrobial Polymyxin B (PolB). While EptA and EptB enzymes catalyze the addition of pEtN to the Lipid A and Kdo (pEtN-Kdo-Lipid A), EptC catalyzes the pEtN addition to the Heptose I (pEtN-HeptI). In this study, we investigated the contribution of pEtN-HeptI to PolB resistance using eptA/eptB and eptC deficient E. coli K12 and its wild-type parent strains. These mutations were shown to decrease the antimicrobial activity of PolB on cells grown under pEtN-addition inducing conditions. Furthermore, the 1-N-phenylnapthylamine uptake assay revealed that in vivo PolB has a reduced OM-permeabilizing activity on the ΔeptA/eptB strain compared with the ΔeptC strain. In vitro, the changes in size and zeta potential of LPS-vesicles indicate that pEtN-HeptI reduce the PolB binding, but in a minor extent than pEtN-Kdo-Lipid A. Molecular dynamics analysis revealed the structural basis of the PolB resistance promoted by pEtN-HeptI, which generate a new hydrogen-bonding networks and a denser inner core region. Altogether, the experimental and theoretical assays shown herein indicate that pEtN-HeptI addition promote an LPS conformational rearrangement, that could act as a shield by hindering the accession of PolB to inner LPS-targets moieties.
Original language | English |
---|---|
Pages (from-to) | 28-34 |
Number of pages | 7 |
Journal | Archives of Biochemistry and Biophysics |
Volume | 620 |
DOIs | |
Publication status | Published - 15 Apr 2017 |
Keywords
- Lipopolysaccharide
- Phosphoethanolamine
- Polymyxin
ASJC Scopus subject areas
- Biophysics
- Biochemistry
- Molecular Biology