TY - JOUR
T1 - Only one of the two type VI secretion systems encoded in the Salmonella enterica serotype Dublin genome is involved in colonization of the avian and murine hosts
AU - Pezoa, David
AU - Blondel, Carlos J.
AU - Silva, Cecilia A.
AU - Yang, Hee Jeong
AU - Andrews-Polymenis, Helene
AU - Santiviago, Carlos A.
AU - Contreras, Inés
N1 - Funding Information:
This work was supported by grant 1100092 from Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT), Chile. CJB was supported by Postdoctoral Fellowship 3120175 from FONDECYT. David Pezoa was supported by fellowships from FULBRIGHT, CONICYT (N°21090041, AT-24121297, 75110062 BCH-3), CAS was supported by grant 1110172 from FONDECYT. HAP was supported by grants NIH/NIAID R01AI083646, R56AI077645, R21AI083964 and USDA 2009–03579. We thank James W. Wilson for generous gift of bacterial strains and plasmids required for the VEX-Capture technique, and Lydia Bogomolnaya, Francisco Ipinza and Marissa Talamantes for technical assistance.
PY - 2014/1/9
Y1 - 2014/1/9
N2 - The type VI secretion system (T6SS) is a virulence factor for many Gram-negative bacteria. Salmonella genus harbors five phylogenetically distinct T6SS loci encoded in Salmonella Pathogenicity Islands (SPIs) SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22, which are differentially distributed among serotypes. The T6SSs encoded in SPI-6 and SPI-19 contribute to pathogenesis of serotypes Typhimurium and Gallinarum in mice and chickens, respectively. Salmonella Dublin is a pathogen restricted to cattle where it causes a systemic disease. Also, it can colonize other hosts such as chickens and mice, which can act as reservoirs of this serotype. Salmonella Dublin harbors the genes for both T6SS SPI-6 and T6SSSPI-19. This study has determined the contribution of T6SSSPI-6 and T6SSSPI-19 to host-colonization by Salmonella Dublin using avian and murine models of infection. Competitive index experiments showed that, a mutant strain lacking both T6SSs (T6SSSPI-6/T6SSSPI-19) presents a strong colonization defect in cecum of chickens, similar to the defect observed for the T6SSSPI-6 mutant, suggesting that this serotype requires a functional T6SSSPI-6 for efficient colonization of the avian gastrointestinal tract. Colonization of mice was also defective, although to a lesser extent than in chickens. In contrast, the T6SSSPI-19 was not necessary for colonization of either chickens or mice. Transfer of T6SS SPI-6, but not T6SSSPI-19, restored the ability of the double mutant to colonize both animal hosts. Our data indicate that Salmonella Dublin requires only the T6SSSPI-6 for efficient colonization of mice and chickens, and that the T6SSSPI-6 and T6SSSPI-19 are not functionally redundant.
AB - The type VI secretion system (T6SS) is a virulence factor for many Gram-negative bacteria. Salmonella genus harbors five phylogenetically distinct T6SS loci encoded in Salmonella Pathogenicity Islands (SPIs) SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22, which are differentially distributed among serotypes. The T6SSs encoded in SPI-6 and SPI-19 contribute to pathogenesis of serotypes Typhimurium and Gallinarum in mice and chickens, respectively. Salmonella Dublin is a pathogen restricted to cattle where it causes a systemic disease. Also, it can colonize other hosts such as chickens and mice, which can act as reservoirs of this serotype. Salmonella Dublin harbors the genes for both T6SS SPI-6 and T6SSSPI-19. This study has determined the contribution of T6SSSPI-6 and T6SSSPI-19 to host-colonization by Salmonella Dublin using avian and murine models of infection. Competitive index experiments showed that, a mutant strain lacking both T6SSs (T6SSSPI-6/T6SSSPI-19) presents a strong colonization defect in cecum of chickens, similar to the defect observed for the T6SSSPI-6 mutant, suggesting that this serotype requires a functional T6SSSPI-6 for efficient colonization of the avian gastrointestinal tract. Colonization of mice was also defective, although to a lesser extent than in chickens. In contrast, the T6SSSPI-19 was not necessary for colonization of either chickens or mice. Transfer of T6SS SPI-6, but not T6SSSPI-19, restored the ability of the double mutant to colonize both animal hosts. Our data indicate that Salmonella Dublin requires only the T6SSSPI-6 for efficient colonization of mice and chickens, and that the T6SSSPI-6 and T6SSSPI-19 are not functionally redundant.
UR - http://www.scopus.com/inward/record.url?scp=84892176632&partnerID=8YFLogxK
U2 - 10.1186/1297-9716-45-2
DO - 10.1186/1297-9716-45-2
M3 - Article
C2 - 24405577
AN - SCOPUS:84892176632
SN - 0928-4249
VL - 45
JO - Veterinary Research
JF - Veterinary Research
IS - 1
M1 - 2
ER -