TY - JOUR
T1 - NF-κB activation by depolarization of skeletal muscle cells depends on ryanodine and IP3 receptor-mediated calcium signals
AU - Valdés, Juan Antonio
AU - Hidalgo, Jorge
AU - Galaz, José Luis
AU - Puentes, Natalia
AU - Silva, Mónica
AU - Jaimovich, Enrique
AU - Carrasco, M. Angélica
N1 - Copyright:
Copyright 2009 Elsevier B.V., All rights reserved.
PY - 2007/5
Y1 - 2007/5
N2 - Depolarization of skeletal muscle cells by either high external K + or repetitive extracellular field potential pulses induces calcium release from internal stores. The two components of this release are mediated by either ryanodine receptors or inositol 1,4,5-trisphosphate (IP3) receptors and show differences in kinetics, amplitude, and subcellular localization. We have reported that the transcriptional regulators including ERKs, cAMP/Ca2+-response element binding protein, c-fos, c-jun, and egr-1 are activated by K+-induced depolarization and that their activation requires IP3-dependent calcium release. We presently describe the activation of the nuclear transcription factor NF-κB in response to depolarization by either high K+ (chronic) or electrical pulses (fluctuating). Calcium transients of relative short duration activate an NF-κB reporter gene to an intermediate level, whereas long-lasting calcium increases obtained by prolonged electrical stimulation protocols of various frequencies induce maximal activation of NF-κB. This activation is independent of extracellular calcium, whereas calcium release mediated by either ryanodine or IP3 receptors contribute in all conditions tested. NF-κB activation is mediated by IκBα degradation and p65 translocation to the nucleus. Partial blockade by N-acetyl-L-cysteine, a general antioxidant, suggests the participation of reactive oxygen species. Calcium-dependent signaling pathways such as those linked to calcineurin and PKC also contribute to NF-κB activation by depolarization, as assessed by blockade through pharmacological agents. These results suggest that NF-κB activation in skeletal muscle cells is linked to membrane depolarization and depends on the duration of elevated intracellular calcium. It can be regulated by sequential activation of calcium release mediated by the ryanodine and by IP3 receptors.
AB - Depolarization of skeletal muscle cells by either high external K + or repetitive extracellular field potential pulses induces calcium release from internal stores. The two components of this release are mediated by either ryanodine receptors or inositol 1,4,5-trisphosphate (IP3) receptors and show differences in kinetics, amplitude, and subcellular localization. We have reported that the transcriptional regulators including ERKs, cAMP/Ca2+-response element binding protein, c-fos, c-jun, and egr-1 are activated by K+-induced depolarization and that their activation requires IP3-dependent calcium release. We presently describe the activation of the nuclear transcription factor NF-κB in response to depolarization by either high K+ (chronic) or electrical pulses (fluctuating). Calcium transients of relative short duration activate an NF-κB reporter gene to an intermediate level, whereas long-lasting calcium increases obtained by prolonged electrical stimulation protocols of various frequencies induce maximal activation of NF-κB. This activation is independent of extracellular calcium, whereas calcium release mediated by either ryanodine or IP3 receptors contribute in all conditions tested. NF-κB activation is mediated by IκBα degradation and p65 translocation to the nucleus. Partial blockade by N-acetyl-L-cysteine, a general antioxidant, suggests the participation of reactive oxygen species. Calcium-dependent signaling pathways such as those linked to calcineurin and PKC also contribute to NF-κB activation by depolarization, as assessed by blockade through pharmacological agents. These results suggest that NF-κB activation in skeletal muscle cells is linked to membrane depolarization and depends on the duration of elevated intracellular calcium. It can be regulated by sequential activation of calcium release mediated by the ryanodine and by IP3 receptors.
KW - Electrical stimulation
KW - Intracellular calcium stores
KW - Transcription
UR - http://www.scopus.com/inward/record.url?scp=34250635494&partnerID=8YFLogxK
U2 - 10.1152/ajpcell.00320.2006
DO - 10.1152/ajpcell.00320.2006
M3 - Article
C2 - 17215326
AN - SCOPUS:34250635494
SN - 0363-6143
VL - 292
SP - C1960-C1970
JO - American Journal of Physiology - Cell Physiology
JF - American Journal of Physiology - Cell Physiology
IS - 5
ER -