Modulated model predictive control for active split DC-bus 4-leg power supply

S. Bifaretti, S. Pipolo, A. Lidozzi, L. Solero, L. Tarisciotti, P. Zanchetta

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

This paper proposes a constant switching frequency Finite Control Set Model Predictive Control (FCS-MPC), formally Modulated FCS-MPC or M2PC, for a 4-leg inverter having an Active Split DC-bus on the fourth leg. The great advantage of MPC over linear control schemes is the very fast transient response it is capable to produce; it also can handle general constrained nonlinear systems with multiple inputs and outputs in a unified and clear manner. These features are highly valuable in power electronic converters used to supply the electrical utility loads in micro-grids. However, one of the main drawback of the MPC is its variable switching frequency, above all in system with accurately tuned output power filters (i.e. switching traps), which is the case when stable voltage waveforms with very low harmonic content are required. The proposed investigation relates with the application of a constant switching frequency variant of the MPC to a 4-leg inverter with a specifically tuned filter to assure high quality voltage supply even in case of non-linear and unbalanced loads.

Original languageEnglish
Title of host publication2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4622-4627
Number of pages6
ISBN (Electronic)9781509029983
DOIs
Publication statusPublished - 3 Nov 2017
Event9th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2017 - Cincinnati, United States
Duration: 1 Oct 20175 Oct 2017

Publication series

Name2017 IEEE Energy Conversion Congress and Exposition, ECCE 2017
Volume2017-January

Conference

Conference9th Annual IEEE Energy Conversion Congress and Exposition, ECCE 2017
Country/TerritoryUnited States
CityCincinnati
Period1/10/175/10/17

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering
  • Renewable Energy, Sustainability and the Environment
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Modulated model predictive control for active split DC-bus 4-leg power supply'. Together they form a unique fingerprint.

Cite this