Low-scale seesaw from neutrino condensation

Claudio Dib, Sergey Kovalenko, Ivan Schmidt, Adam Smetana

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Knowledge of the mechanism of neutrino mass generation would help understand a lot more about Lepton Number Violation (LNV), the cosmological evolution of the Universe, or the evolution of astronomical objects. Here we propose a verifiable and viable extension of the Standard model for neutrino mass generation, with a low-scale seesaw mechanism via LNV condensation in the sector of sterile neutrinos. To prove the concept, we analyze a simplified model of just a single family of elementary particles and check it against a set of phenomenological constraints coming from electroweak symmetry breaking, neutrino masses, leptogenesis and dark matter. The model predicts (i) TeV scale quasi-degenerate heavy sterile neutrinos, suitable for leptogenesis with resonant enhancement of the CP asymmetry, (ii) a set of additional heavy Higgs bosons whose existence can be challenged at the LHC, (iii) an additional light and sterile Higgs scalar which is a candidate for decaying warm dark matter, and (iv) a majoron. Since the model is based on simple and robust principles of dynamical mass generation, its parameters are very restricted, but remarkably it is still within current phenomenological limits.

Original languageEnglish
Article number114910
JournalNuclear Physics B
Volume952
DOIs
Publication statusPublished - Mar 2020

ASJC Scopus subject areas

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Low-scale seesaw from neutrino condensation'. Together they form a unique fingerprint.

Cite this