Invitation to the Cosmic Ray Extremely Distributed Observatory

Cosmic Ray Extremely Distributed Observatory

Research output: Contribution to journalConference articlepeer-review

2 Citations (Scopus)

Abstract

Cosmic Ray Ensembles (CRE) are very large, yet not observed particle cascades initiated above the Earth atmosphere. Such cascades could be formed both within classical models (e.g. products of photon-photon interactions) and exotic scenarios (e.g. result of decay of Super Heavy Dark Matter particles and subsequent interactions). Some of CRE might have a significant spatial extent which could serve as a unique signature detectable with the existing cosmic ray infrastructure taken as a network of detectors. This signature would be composed of a number of air showers with parallel axes. An obvious, although yet not probed, CRE „detection horizon” can be located somewhere between an air shower induced by an CRE composed of tightly collimated particles (preshower effect), and undetectable CRE composed of particles spread so widely that only one of them have a chance to reach Earth. Probing the CRE horizon with a global approach to the cosmic ray data, as proposed by the newly formed Cosmic Ray Extremely Distributed Observatory (CREDO), defines an extensive scientific program oriented on the search for physics manifestations at largest energies known, with potential impact on ultra-high energy astrophysics, the physics of fundamental particle interactions and cosmology. In this talk the current status and perspectives of CREDO will be summarized, with an open invitation for the colleagues interested in a global approach to cosmic ray studies, and in particular in observing and investigating multi-primary cosmic ray events such as CRE.

Original languageEnglish
Article number942
JournalProceedings of Science
Volume395
Publication statusPublished - 18 Mar 2022
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: 12 Jul 202123 Jul 2021

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Invitation to the Cosmic Ray Extremely Distributed Observatory'. Together they form a unique fingerprint.

Cite this