Functional determinants of radial operators in AdS 2

Jeremías Aguilera-Damia, Alberto Faraggi, Leopoldo Pando Zayas, Vimal Rathee, Guillermo A. Silva

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


We study the zeta-function regularization of functional determinants of Laplace and Dirac-type operators in two-dimensional Euclidean AdS2 space. More specifically, we consider the ratio of determinants between an operator in the presence of background fields with circular symmetry and the free operator in which the background fields are absent. By Fourier-transforming the angular dependence, one obtains an infinite number of one-dimensional radial operators, the determinants of which are easy to compute. The summation over modes is then treated with care so as to guarantee that the result coincides with the two-dimensional zeta-function formalism. The method relies on some well-known techniques to compute functional determinants using contour integrals and the construction of the Jost function from scattering theory. Our work generalizes some known results in flat space. The extension to conformal AdS2 geometries is also considered. We provide two examples, one bosonic and one fermionic, borrowed from the spectrum of fluctuations of the holographic 14 -BPS latitude Wilson loop.

Original languageEnglish
Article number7
JournalJournal of High Energy Physics
Issue number6
Publication statusPublished - 1 Jun 2018


  • 1/N Expansion
  • AdS-CFT Correspondence
  • Supersymmetric Gauge Theory
  • Wilson
  • ’t Hooft and Polyakov loops

ASJC Scopus subject areas

  • Nuclear and High Energy Physics


Dive into the research topics of 'Functional determinants of radial operators in AdS 2'. Together they form a unique fingerprint.

Cite this