Enantioselective hydrogenation of 1-phenyl-1,2-propanedione on immobilised cinchonidine-TiO2 catalysts

Cristian H. Campos, Cecilia C. Torres, Ana B. Dongil, Doris Ruiz, José L.G. Fierro, Patricio Reyes

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


The enantioselective hydrogenation of 1-phenyl-1,2-propanodione (PPD) was investigated using cinchonidine-immobilised Pt/TiO2 catalysts. Prior to metal deposition, TiO2 was chirally modified by the direct anchoring of cinchonidine (CD) using trimethoxysilane as coupling agent (TMS-CD). The catalysts were prepared using a high H2 pressure reduction-deposition method and were characterised by elemental analysis (C, H and N), TG, DRIFT, 13C and 29Si solid-state NMR, N 2 adsorption-desorption isotherms, XRD, XPS and HR-TEM. The catalytic activity was evaluated in a batch reactor at 298 K and 40 bar using cyclohexane as solvent with various cinchonidine concentrations. The results indicate that the enantioselectivity was sensitive to the CD surface concentration and the enantiomeric excess of the target product, 1-R-phenyl-1-hydroxy-2-propanone, was in the range of 25-51%. The best catalyst was the one supported on TiO 2 with a nominal content of 10 wt% TMS-CD. The effect of the H 2 pressure, the concentration of substrate, solvent and recyclability of the catalyst were studied. The results obtained confirmed that the variation of reaction conditions affects both the activity and enantioselectivity due to the substrate adsorption on the metal active sites. Concerning the solvent effect, the enantiomeric excess decreased non-linearly upon increasing the solvent dielectric constant; this was attributed to the interactions between solvents and TMS-CD on the surface. In the catalyst recycling studies, the enantiomeric excess decreased up to 40% after the 3rd reuse. The drop of activity and enantiomeric excess was attributed to the hydrogenation of the immobilised CD.

Original languageEnglish
Pages (from-to)226-236
Number of pages11
JournalCatalysis Today
Publication statusPublished - 15 Oct 2014


  • 1-Phenyl-propane-1,2- dione
  • Enantioselective hydrogenation
  • Immobilised cinchonidine

ASJC Scopus subject areas

  • Catalysis
  • General Chemistry


Dive into the research topics of 'Enantioselective hydrogenation of 1-phenyl-1,2-propanedione on immobilised cinchonidine-TiO2 catalysts'. Together they form a unique fingerprint.

Cite this