TY - JOUR
T1 - Electrochemical and photo-electrochemical processes of Methylene blue oxidation by Ti/TiO2 electrodes modified with Fe-allophane
AU - Lezana, Nicole
AU - Fernández-Vidal, Francisco
AU - Berríos, Cristhian
AU - Garrido-Ramírez, Elizabeth
N1 - Funding Information:
This work was supported by FONDECYT-CONICYT Grant 11090336 and Dicyt-USACH 21441BG.
PY - 2017/6/1
Y1 - 2017/6/1
N2 - This work reports the degradation of methylene blue (MB) on Ti/TiO2 and Ti/TiO2/Fe-allophane electrodes in a pH 3 using 0.1 M Na2SO4 as support electrolyte. SEM micrographs show a homogeneous distribution of TiO2 over the whole electrode surface forming nanotubes and nanopores. Fe-allophane modified electrode shows the formation of large-grains agglomerate on the electrode surface due to allophane, which provides a greater surface area to the electrode due to meso and micropore structures. Preliminary cyclic voltammetry show that Ti/TiO2 has the typical voltammetric response due to Ti(III)/Ti(IV) pair. Diffusional problems were observed through of the film when the electrode is modified with Fe-allophane modifying the quasi-reversible process Ti(III)/Ti(IV). Different kind of methodologies in the degradation process were used: Electrochemistry (EC), Photochemistry (PC), Photoelectrochemistry (PEC) and Adsorption (Ads). These methods were developing to discard any reaction or interaction that is not of interest. On Ti/TiO2 with PC and Ads methodologies was not observed any activity to MB degradation showing that is not photosensitive and that the interaction between this and surface electrode is low. But with EC and PEC degradation to 55% is reached after 3 hours of electrolysis. With Ti/TiO2-Fe-allophane electrodes are observed a higher activity for all methodologies. The PC and Ads methods show that the MB degradation reaches to ∼20 % of the initial concentration. As mentioned above, the PC and Ads processes no show degradation on Ti/TiO2, therefore the degradation it only due to the adsorption of MB in/on allophane coat behaving as concentrator matrix. A lower improvement is observed with EC process when is incorporated Ti/TiO2-Fe-allophane is due to the barrier of the electrode surface by oxidation products. With PEC is reached the higher degradation value of ∼88 %, showing an improvement of the degradation with the presence of Fe-allophane. The results indicate that the main role of Fe-allophane on the electrode is similar to a concentrator matrix.
AB - This work reports the degradation of methylene blue (MB) on Ti/TiO2 and Ti/TiO2/Fe-allophane electrodes in a pH 3 using 0.1 M Na2SO4 as support electrolyte. SEM micrographs show a homogeneous distribution of TiO2 over the whole electrode surface forming nanotubes and nanopores. Fe-allophane modified electrode shows the formation of large-grains agglomerate on the electrode surface due to allophane, which provides a greater surface area to the electrode due to meso and micropore structures. Preliminary cyclic voltammetry show that Ti/TiO2 has the typical voltammetric response due to Ti(III)/Ti(IV) pair. Diffusional problems were observed through of the film when the electrode is modified with Fe-allophane modifying the quasi-reversible process Ti(III)/Ti(IV). Different kind of methodologies in the degradation process were used: Electrochemistry (EC), Photochemistry (PC), Photoelectrochemistry (PEC) and Adsorption (Ads). These methods were developing to discard any reaction or interaction that is not of interest. On Ti/TiO2 with PC and Ads methodologies was not observed any activity to MB degradation showing that is not photosensitive and that the interaction between this and surface electrode is low. But with EC and PEC degradation to 55% is reached after 3 hours of electrolysis. With Ti/TiO2-Fe-allophane electrodes are observed a higher activity for all methodologies. The PC and Ads methods show that the MB degradation reaches to ∼20 % of the initial concentration. As mentioned above, the PC and Ads processes no show degradation on Ti/TiO2, therefore the degradation it only due to the adsorption of MB in/on allophane coat behaving as concentrator matrix. A lower improvement is observed with EC process when is incorporated Ti/TiO2-Fe-allophane is due to the barrier of the electrode surface by oxidation products. With PEC is reached the higher degradation value of ∼88 %, showing an improvement of the degradation with the presence of Fe-allophane. The results indicate that the main role of Fe-allophane on the electrode is similar to a concentrator matrix.
KW - Electrochemical and photoelectrochemical oxidation
KW - Fe-Allophane
KW - Methylene blue
KW - Ti/TiO
UR - http://www.scopus.com/inward/record.url?scp=85027000762&partnerID=8YFLogxK
U2 - 10.4067/S0717-97072017000200021
DO - 10.4067/S0717-97072017000200021
M3 - Article
AN - SCOPUS:85027000762
VL - 62
SP - 3529
EP - 3534
JO - Journal of the Chilean Chemical Society
JF - Journal of the Chilean Chemical Society
SN - 0717-9324
IS - 2
ER -