Early Permian to Late Triassic batholiths of the Chilean Frontal Cordillera (28°-31°S): SHRIMP U-Pb zircon ages and Lu-Hf and O isotope systematics

Francisco Hervé, C. Mark Fanning, Mauricio Calderón, Constantino Mpodozis

Research output: Contribution to journalArticlepeer-review

70 Citations (Scopus)

Abstract

One of the major geological units of the Main Andean Range (Frontal Cordillera) of north-central Chile is a group of composite and heterochronous late Paleozoic-early Mesozoic batholiths that extends for 500km roughly NS along from 26° to 31°S. Ten new SHRIMP zircon crystallization ages together with 11 recently published U-Pb zircon ages by other authors indicate an episodic intrusion history which can be divided in 4 groups: Mississippian (earliest Carboniferous; 330-326Ma), Cisuralian (earliest Permian; 301-284Ma), latest Permian to Middle Triassic (264-242Ma) and Late Triassic (225-215Ma). Volcanic rocks in the area span a similar time. Lu-Hf and O isotopic systematics in zircon grains from eight of the plutonic rocks indicate the magma source areas have contributed variable amounts of crustal and mantle components. Zircon δ18O values evolve from crustal values (+7‰) in the earliest Permian intrusives to mantle values in the latest Permian to Upper Triassic, including evidence for likely hydrothermal alteration of the source (+4‰). Zircon εHf values vary in a good linear correlation with the δ18O isotopes, from -6 to 0 in rocks older than 270Ma increasing to+2 to +7 from Lower to Upper Triassic (250 to 215Ma). The petrogenetic constraints indicated by these values, suggest that the influence of magma sources varied with time from predominantly crustal to mantle like. In accord with the regional tectonic models, the earliest Permian rocks were generated in a subduction-related magmatic arc, which varied towards an extension-related environment in the latest Permian and Triassic.

Original languageEnglish
Pages (from-to)436-446
Number of pages11
JournalLithos
Volume184-187
DOIs
Publication statusPublished - Jan 2014

Keywords

  • Elqui-Limarí batholith
  • Magma sources
  • Oxygen and Lu-Hf isotopes
  • Permian

ASJC Scopus subject areas

  • Geology
  • Geochemistry and Petrology

Fingerprint

Dive into the research topics of 'Early Permian to Late Triassic batholiths of the Chilean Frontal Cordillera (28°-31°S): SHRIMP U-Pb zircon ages and Lu-Hf and O isotope systematics'. Together they form a unique fingerprint.

Cite this