Dynein regulators are important for ecotropic murine leukemia virus infection

Roger Valle-Tenney, Tatiana Opazo, Jorge Cancino, Stephen P. Goff, Gloria Arriagada

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)

Abstract

During the early steps of infection, retroviruses must direct the movement of the viral genome into the nucleus to complete their replication cycle. This process is mediated by cellular proteins that interact first with the reverse transcription complex and later with the preintegration complex (PIC), allowing it to reach and enter the nucleus. For simple retroviruses, such as murine leukemia virus (MLV), the identities of the cellular proteins involved in trafficking of the PIC in infection are unknown. To identify cellular proteins that interact with the MLV PIC, we developed a replication-competent MLV in which the integrase protein was tagged with a FLAG epitope. Using a combination of immunoprecipitation and mass spectrometry, we established that the microtubule motor dynein regulator DCTN2/p50/dynamitin interacts with the MLV preintegration complex early in infection, suggesting a direct interaction between the incoming viral particles and the dynein complex regulators. Further experiments showed that RNA interference (RNAi)-mediated silencing of either DCTN2/p50/dynamitin or another dynein regulator, NudEL, profoundly reduced the efficiency of infection by ecotropic, but not amphotropic, MLV reporters. We propose that the cytoplasmic dynein regulators are a critical component of the host machinery needed for infection by the retroviruses entering the cell via the ecotropic envelope pathway.

Original languageEnglish
Pages (from-to)6896-6905
Number of pages10
JournalJournal of Virology
Volume90
Issue number15
DOIs
Publication statusPublished - 2016

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint

Dive into the research topics of 'Dynein regulators are important for ecotropic murine leukemia virus infection'. Together they form a unique fingerprint.

Cite this