Black carbon footprint of human presence in Antarctica

Raúl R. Cordero, Edgardo Sepúlveda, Sarah Feron, Alessandro Damiani, Francisco Fernandoy, Steven Neshyba, Penny M. Rowe, Valentina Asencio, Jorge Carrasco, Juan A. Alfonso, Pedro Llanillo, Paul Wachter, Gunther Seckmeyer, Marina Stepanova, Juan M. Carrera, Jose Jorquera, Chenghao Wang, Avni Malhotra, Jacob Dana, Alia L. KhanGino Casassa

Research output: Contribution to journalArticlepeer-review

34 Citations (Scopus)

Abstract

Black carbon (BC) from fossil fuel and biomass combustion darkens the snow and makes it melt sooner. The BC footprint of research activities and tourism in Antarctica has likely increased as human presence in the continent has surged in recent decades. Here, we report on measurements of the BC concentration in snow samples from 28 sites across a transect of about 2,000 km from the northern tip of Antarctica (62°S) to the southern Ellsworth Mountains (79°S). Our surveys show that BC content in snow surrounding research facilities and popular shore tourist-landing sites is considerably above background levels measured elsewhere in the continent. The resulting radiative forcing is accelerating snow melting and shrinking the snowpack on BC-impacted areas on the Antarctic Peninsula and associated archipelagos by up to 23 mm water equivalent (w.e.) every summer.

Original languageEnglish
Article number984
JournalNature Communications
Volume13
Issue number1
DOIs
Publication statusPublished - Dec 2022

ASJC Scopus subject areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Black carbon footprint of human presence in Antarctica'. Together they form a unique fingerprint.

Cite this