Atomic-scale imaging of polarization switching in an (anti-)ferroelectric memory material: Zirconia (ZrO2)

S. Lombardo, C. Nelson, K. Chae, S. Reyes-Lillo, M. Tian, N. Tasneem, Z. Wang, M. Hoffmann, D. Triyoso, S. Consiglio, K. Tapily, R. Clark, G. Leusink, K. Cho, A. Kummel, J. Kacher, A. Khan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Direct, atomic-scale visualization of polarization switching in a functional, polycrystalline, binary oxide via insitu high-resolution transmission electron microscopy (HRTEM) biasing is reported for the first time. Antiferroelectric (AFE) ZrO2 was used as the model system, which is important for commercial DRAMs and as emerging NVMs (through work-function engineering). We observed (1) clear shifting and coalescing of domains within a single grain, and (2) dramatic changes of the atomic arrangements and crystalline phases-both at voltages above the critical voltage measured for AFE switching. Similar synergistic in-situ structural-electrical characterization can pave the way to understand and engineer microscopic mechanisms for retention, fatigue, variability, sub-coercive switching and analog states in ferroelectric and AFE-based memory devices.

Original languageEnglish
Title of host publication2020 IEEE Symposium on VLSI Technology, VLSI Technology 2020 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728164601
DOIs
Publication statusPublished - Jun 2020
Externally publishedYes
Event2020 IEEE Symposium on VLSI Technology, VLSI Technology 2020 - Honolulu, United States
Duration: 16 Jun 202019 Jun 2020

Publication series

NameDigest of Technical Papers - Symposium on VLSI Technology
Volume2020-June
ISSN (Print)0743-1562

Conference

Conference2020 IEEE Symposium on VLSI Technology, VLSI Technology 2020
Country/TerritoryUnited States
CityHonolulu
Period16/06/2019/06/20

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Atomic-scale imaging of polarization switching in an (anti-)ferroelectric memory material: Zirconia (ZrO2)'. Together they form a unique fingerprint.

Cite this