Antiferroelectric negative capacitance from a structural phase transition in zirconia

Michael Hoffmann, Zheng Wang, Nujhat Tasneem, Ahmad Zubair, Prasanna Venkatesan Ravindran, Mengkun Tian, Anthony Arthur Gaskell, Dina Triyoso, Steven Consiglio, Kandabara Tapily, Robert Clark, Jae Hur, Sai Surya Kiran Pentapati, Sung Kyu Lim, Milan Dopita, Shimeng Yu, Winston Chern, Josh Kacher, Sebastian E. Reyes-Lillo, Dimitri AntoniadisJayakanth Ravichandran, Stefan Slesazeck, Thomas Mikolajick, Asif Islam Khan

Research output: Contribution to journalArticlepeer-review


Crystalline materials with broken inversion symmetry can exhibit a spontaneous electric polarization, which originates from a microscopic electric dipole moment. Long-range polar or anti-polar order of such permanent dipoles gives rise to ferroelectricity or antiferroelectricity, respectively. However, the recently discovered antiferroelectrics of fluorite structure (HfO2 and ZrO2) are different: A non-polar phase transforms into a polar phase by spontaneous inversion symmetry breaking upon the application of an electric field. Here, we show that this structural transition in antiferroelectric ZrO2 gives rise to a negative capacitance, which is promising for overcoming the fundamental limits of energy efficiency in electronics. Our findings provide insight into the thermodynamically forbidden region of the antiferroelectric transition in ZrO2 and extend the concept of negative capacitance beyond ferroelectricity. This shows that negative capacitance is a more general phenomenon than previously thought and can be expected in a much broader range of materials exhibiting structural phase transitions.

Original languageEnglish
Article number1228
JournalNature Communications
Issue number1
Publication statusPublished - Dec 2022

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)


Dive into the research topics of 'Antiferroelectric negative capacitance from a structural phase transition in zirconia'. Together they form a unique fingerprint.

Cite this