TY - JOUR
T1 - Amphibian phylogenetic diversity in the face of future climate change
T2 - not so good news for the chilean biodiversity hotspot
AU - Rodriguez, Leonardo J.
AU - Barbosa, Olga A.
AU - Soto-Azat, Claudio
AU - Alvarado-Rybak, Mario
AU - Correa, Claudio
AU - Méndez, Marco A.
AU - Moreno-Gómez, Felipe N.
AU - Rabanal, Felipe E.
AU - Vidal, Marcela A.
AU - Velásquez, Nelson A.
AU - Bacigalupe, Leonardo D.
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature B.V.
PY - 2022
Y1 - 2022
N2 - Climate change is projected to be the most extensive human-induced disturbance to occur on natural ecosystems, inducing changes in different biodiversity features including the evolutionary history of a region through the decline and loss of its phylogenetic diversity. Amphibians, given their ectothermic life cycle and critical conservation status, would potentially be exposed to extinction processes under conditions of climate change, with the corresponding loss of evolutionary history in regions of high biodiversity. This research addresses the effects of climate change on the evolutionary history of amphibians in the Chilean Biodiversity Hotspot, by estimating the PD (Phylogenetic diversity) and PE (Phylogenetic endemism) of 27 species. Using different RCP (RCP 4.5 and 8.5) and time frames (years 2050 and 2070), we create species distribution models (SDM) to evaluate the species range dynamics and the phylodiversity in the Hotspot. Also, given that Protected Areas (PA) are the main global strategy to ensure the conservation of species and their features, we evaluate the capacity of PA to conserve the evolutionary history in the Hotspot. Our results show a set of modeled species that will become extinct, or will experiment changes in their distributional ranges, inducing a clear decline of amphibian evolutionary history for the next 30 to 50 years, and a worrying low capacity of the PA to contain current and future PD and PE. Given the critical amphibian scenario, our results highlight the need for further research to improve the decision-making process in the hotspot area addressing the potential amphibian extinction risk, the lack of protection by the PA system, and the loss of evolutionary history as a key aspect of biodiversity.
AB - Climate change is projected to be the most extensive human-induced disturbance to occur on natural ecosystems, inducing changes in different biodiversity features including the evolutionary history of a region through the decline and loss of its phylogenetic diversity. Amphibians, given their ectothermic life cycle and critical conservation status, would potentially be exposed to extinction processes under conditions of climate change, with the corresponding loss of evolutionary history in regions of high biodiversity. This research addresses the effects of climate change on the evolutionary history of amphibians in the Chilean Biodiversity Hotspot, by estimating the PD (Phylogenetic diversity) and PE (Phylogenetic endemism) of 27 species. Using different RCP (RCP 4.5 and 8.5) and time frames (years 2050 and 2070), we create species distribution models (SDM) to evaluate the species range dynamics and the phylodiversity in the Hotspot. Also, given that Protected Areas (PA) are the main global strategy to ensure the conservation of species and their features, we evaluate the capacity of PA to conserve the evolutionary history in the Hotspot. Our results show a set of modeled species that will become extinct, or will experiment changes in their distributional ranges, inducing a clear decline of amphibian evolutionary history for the next 30 to 50 years, and a worrying low capacity of the PA to contain current and future PD and PE. Given the critical amphibian scenario, our results highlight the need for further research to improve the decision-making process in the hotspot area addressing the potential amphibian extinction risk, the lack of protection by the PA system, and the loss of evolutionary history as a key aspect of biodiversity.
KW - Climate change
KW - Global change
KW - Species distribution models
UR - http://www.scopus.com/inward/record.url?scp=85134574301&partnerID=8YFLogxK
U2 - 10.1007/s10531-022-02444-3
DO - 10.1007/s10531-022-02444-3
M3 - Article
AN - SCOPUS:85134574301
SN - 0960-3115
VL - 31
SP - 2587
EP - 2603
JO - Biodiversity and Conservation
JF - Biodiversity and Conservation
IS - 11
ER -