Activation of H 2 O 2 -induced VSOR Cl - currents in HTC cells require phospholipase Cγ1 phosphorylation and Ca 2+ mobilisation

Diego Varela, Felipe Simon, Pablo Olivero, Ricardo Armisén, Elías Leiva-Salcedo, Finn Jørgensen, Francisco Sala, Andrés Stutzin

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

Volume-sensitive outwardly rectifying (VSOR) Cl - channels participate in several physiological processes such as regulatory volume decrease, cell cycle regulation, proliferation and apoptosis. Recent evidence points to a significant role of hydrogen peroxide (H 2 O 2 ) in VSOR Cl - channel activation. The aim of this study was to determine the signalling pathways responsible for H 2 O 2 -induced VSOR Cl - channel activation. In rat hepatoma (HTC) cells, H 2 O 2 elicited a transient increase in tyrosine phosphorylation of phospholipase Cγ1 (PLCγ1) that was blocked by PP2, a Src-family protein kinases inhibitor. Also, H 2 O 2 triggered an increase in cytosolic [Ca 2+ ] that paralleled the time course of PLCγ1 phosphorylation. The H 2 O 2 -induced [Ca 2+ ] i rise was prevented by the generic phospholipase C (PLC) inhibitor U73122 and the inositol 1,4,5-trisphosphate-receptor (IP 3 R) blocker 2-APB. In line with these results, manoeuvres that prevented PLCγ1 activation and/or [Ca 2+ ] i rise, abolished H 2 O 2 -induced VSOR Cl - currents. Furthermore, in cells that overexpress a phosphorylation-defective dominant mutant of PLCγ1, H 2 O 2 did not induce activation of VSOR Cl - currents. All these H 2 O 2 -induced effects were independent of extracellular Ca 2+ . Our findings suggest that activation of PLCγ1 and subsequent Ca 2+ i mobilisation mediate H 2 O 2 -induced VSOR Cl - currents, indicating that H 2 O 2 operates via redox-sensitive signalling pathways akin to those activated by osmotic challenges.

Original languageEnglish
Pages (from-to)773-780
Number of pages8
JournalCellular Physiology and Biochemistry
Volume20
Issue number6
DOIs
Publication statusPublished - 2007

Keywords

  • Ca
  • Hydrogen peroxide
  • IP
  • Phospholipase C
  • Volume-sensitive chloride channels

ASJC Scopus subject areas

  • Physiology

Fingerprint

Dive into the research topics of 'Activation of H <sub>2</sub> O <sub>2</sub> -induced VSOR Cl <sup>-</sup> currents in HTC cells require phospholipase Cγ1 phosphorylation and Ca <sup>2+</sup> mobilisation'. Together they form a unique fingerprint.

Cite this