A Sensorless Inverse Optimal Control plus Integral Action to Regulate the Output Voltage in a Boost Converter Supplying an Unknown DC Load

Oscar Danilo Montoya, Walter Gil-Gonzalez, Sebastian Riffo, Carlos Restrepo, Catalina Gonzalez-Castano

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

This study utilizes inverse optimal control (IOC) theory to address the issue of output voltage regulation in a boost converter feeding an unknown direct current (DC) load. The proposed approach involves developing a general feedback control law through IOC to ensure asymptotic stability in closed-loop operation, with the added advantage of incorporating an integral gain without compromising stability. Two estimators are introduced to minimize the number of sensors required for implementing the IOC controller with integral action. The first estimator, based on the immersion and invariance (I&I) method, determines the current demand of the DC load by measuring the boost converter's output voltage. While the second estimator, using the disturbance observer (DO) method, estimates the voltage input value by measuring the inductor's current flow. Both methods guarantee exponential convergence to the precise value of the estimated variable, irrespective of the initial estimation points. Experimental validation using varying DC loads and estimation techniques confirms the proposed IOC approach's effectiveness and robustness in regulating voltage for DC loads connected to a boost converter. Furthermore, the proposed controller is compared to the sliding mode control and presents a better performance with a more straightforward design, and the stability in closed-loop ensured.

Original languageEnglish
Pages (from-to)49833-49845
Number of pages13
JournalIEEE Access
Volume11
DOIs
Publication statusPublished - 2023

Keywords

  • disturbance observer estimator
  • Energy storage
  • Inverse optimal control
  • Matrix converters
  • output voltage regulation
  • Power system stability
  • Renewable energy sources
  • sensorless control design
  • Topology
  • unknown DC load
  • Voltage control
  • Voltage measurement

ASJC Scopus subject areas

  • General Computer Science
  • General Materials Science
  • General Engineering

Fingerprint

Dive into the research topics of 'A Sensorless Inverse Optimal Control plus Integral Action to Regulate the Output Voltage in a Boost Converter Supplying an Unknown DC Load'. Together they form a unique fingerprint.

Cite this