TY - GEN
T1 - A Proposal for Detecting Fraud in Drinking Water Consumption through Artificial Neural Networks
AU - Levano, Marco
AU - Galeano, Jaime
AU - Peralta, Billy
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021
Y1 - 2021
N2 - Water is an essential resource in any society, and it has become scarce according to the seasons. Therefore, an efficient administration is increasingly necessary. Drinking water management companies often have consumption losses due to fraudulent consumption by a group of users. Currently these frauds are detected through physical inspections, however it is possible that a user can avoid this detection. On the other hand, multiple studies show that the data contains common patterns in fraud cases. This work proposes the use of a neural network model capable of recommending, based on historical data, drinking water consumption services with a greater possibility of committing fraud within the commune of Lautaro, Chile. Our proposal considers reducing the operating costs associated with on-site inspections, increasing the probability of finding an infraction at the time of execution. By reducing the work associated with fraud analysis, we plan to optimize the man- hours of the process analysts. The evaluation of the predictive model indicates that the proposed model achieves a reduction of more than 60% of cases in relation to previous recent periods considering similar levels of fraud detection, which implies a reduction in operating costs. As future work, the use of recurrent neural networks will be explored, as well as the use of more user variables, in addition to the consumption history.
AB - Water is an essential resource in any society, and it has become scarce according to the seasons. Therefore, an efficient administration is increasingly necessary. Drinking water management companies often have consumption losses due to fraudulent consumption by a group of users. Currently these frauds are detected through physical inspections, however it is possible that a user can avoid this detection. On the other hand, multiple studies show that the data contains common patterns in fraud cases. This work proposes the use of a neural network model capable of recommending, based on historical data, drinking water consumption services with a greater possibility of committing fraud within the commune of Lautaro, Chile. Our proposal considers reducing the operating costs associated with on-site inspections, increasing the probability of finding an infraction at the time of execution. By reducing the work associated with fraud analysis, we plan to optimize the man- hours of the process analysts. The evaluation of the predictive model indicates that the proposed model achieves a reduction of more than 60% of cases in relation to previous recent periods considering similar levels of fraud detection, which implies a reduction in operating costs. As future work, the use of recurrent neural networks will be explored, as well as the use of more user variables, in addition to the consumption history.
KW - Drinking water
KW - Fraud detection
KW - Neural networks
UR - http://www.scopus.com/inward/record.url?scp=85126944121&partnerID=8YFLogxK
U2 - 10.1109/CHILECON54041.2021.9702930
DO - 10.1109/CHILECON54041.2021.9702930
M3 - Conference contribution
AN - SCOPUS:85126944121
T3 - 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021
BT - 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2021 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2021
Y2 - 6 December 2021 through 9 December 2021
ER -