Abstract
This article describes the underpinning research, development, construction, and testing of a 4-MW multithree phase generator designed for a hybrid-electric aircraft propulsion system demonstrator. The aim of the work is to demonstrate gravimetric power densities around 20 kW/kg, as required for multi-MW aircraft propulsion systems. The key design choices, development procedures, and tradeoffs, together with the experimental testing of this electrical machine connected to an active rectifier, are presented. A time-efficient analytical approach to the downselection of various machine configurations, geometrical variables, different active and passive materials, and different thermal management options is first presented. A detailed design approach based on the 3-D finite element analysis (FEA) is then presented for the final design. Reduced power tests are carried out on a full-scale 4-MW machine prototype, validating the proposed design. The experimental results are in good agreement with simulation and show significant progress in the field of high-power-density electrical machines at the targeted power rating.
Original language | English |
---|---|
Pages (from-to) | 2952-2964 |
Number of pages | 13 |
Journal | IEEE Transactions on Transportation Electrification |
Volume | 7 |
Issue number | 4 |
DOIs | |
Publication status | Published - 1 Dec 2021 |
Keywords
- Aerospace generator drives
- high-power generation systems
- high-power high-voltage machines design
- hybrid-electric aircraft (HEA)
- more-electric aircraft
- multiphase motors
- variable speed drives
ASJC Scopus subject areas
- Automotive Engineering
- Transportation
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering